Scaling Recipes - The Pink Whisk

To scale up a recipe you first need a basic recipe and the tin it should be baked in.
You also need the tin you want to bake it in. Both should be roughly the same depth.
Find out the capacity of $\operatorname{tin} \mathbf{A}$ (the one that the cake should be baked in) and find out the capacity of tin \mathbf{B} (the one you want to bake it in). Write it down in millilitres.

Fill them with water to the brim (measure the water as you pour each jugful in rather than trying to measure it back out!)

$$
\text { Tin } \mathbf{B} \text { divided by Tin } \mathbf{A}=\text { Scale }
$$

The scale needs to be adjusted to accommodate the eggs in the original recipe.
Use the chart to find the line matching the number of eggs in the original recipe, look along the scales to find the nearest one to the scale you calculated. This is the scale you need to apply to the recipe. See the full example below.

Number of Eggs in Original Recipe	Scale									
2	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
2	1.34	1.67	2	2.34	2.67	3	3.34	3.67	4	4.34
3	1.25	1.5	1.75	2	2.25	2.5	2.75	3	3.25	3.5
4	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
5	1.17	1.34	1.5	1.67	1.84	2	2.17	2.34	2.5	2.67
6	1.14	1.28	1.43	1.57	1.71	1.85	2	2.14	2.28	2.43
7	1.125	1.25	1.375	1.5	1.625	1.75	1.875	2	2.125	2.25
8	1.11	1.22	1.33	1.44	1.55	1.66	1.77	1.88	1.99	2
9	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
10										

Note: For scales with number of eggs in original recipe equalling $3,6,7$ or 9 you will need to round down the new egg quantity to the whole number e.g 6 eggs multiplied by 1.17 scale $=7.02$

7 eggs needed for the new scaled recipe

Scale Example

Scale the recipe for a $12^{\prime \prime}$ tin to fit a $14^{\prime \prime}$ tin.

12" Maderia Cake Recipe
700g Butter
700g Caster Sugar
10 Eggs
530g Plain Flour
175 g Self-raising Flour
105 ml Milk

The 12 " tin's capacity is 5200 ml . The capacity of the $14^{\prime \prime}$ tin is 7000 ml .

$$
7000 \text { divided by } 5200=1.346
$$

The original recipe has 10 eggs so using this line from the chart

10	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2

The closest scale to 1.346 is $1.3 . \mathbf{1 . 3}$ is the scale to use.

Applied to the recipe:

Butter	700 g	$\mathrm{x} 1.3=910 \mathrm{~g}$
Sugar	700 g	$\times 1.3=910 \mathrm{~g}$
Eggs	10	$\times 1.3=13$
Plain Flour	530 g	$\times 1.3=689 \mathrm{~g}$
Self-raising Flour	175 g	$\times 1.3=227.5 \mathrm{~g}$
Milk	105 ml	$\times 1.3=136.5 \mathrm{ml}$

round any rogue quantities ie. self-raising flour goes to 228 g and milk goes to 137 ml
The new recipe for a $14^{\prime \prime}$ round Madeira cake is:

910g Butter
910g Caster sugar
13 Eggs
689g Plain flour
228 g Self-raising flour
137ml Milk

